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Abstract—Vision perception for unmanned ground vehicle 

trail following has received significant attention from the robotics 

community. Recently, a new approach which is based on deep 

learning used as a supervised image classifier has achieved great 

success and outperforms the traditional methods which aim to 

find the low-level features. However, the robots’ views are limited 

and may be corrupted by substantial obstacles. One approach to 

address this problem is to complement the viewing capabilities of 

an unmanned ground vehicle with overhead data gathered from 

an aerial source. But the traditional methods of UAV/UGV coor-

dination based on the vision focused more on the process of valu-

able feature-extraction, which is complicated and time-

consuming. This paper presents techniques to achieve accurate 

UGV trail following by applying CNN models to the coordination 

of UAV and UGV. Qualitative and quantitative results computed 

on a large simulation and real-world datasets show that our ap-

proach has significantly improved the accuracy of the ground 

vehicle alone.   

Keywords—Visual-Based Navigation; Cooperative perception; 

Aerial Robotics; Ground Robotics; Deep Learning 

 

I.  Introduction  

 Deep learning has recently emerged as a powerful tool 
for various tasks in robotics. The advantages of deep learn-
ing over common alternatives are generality: reduces the 
need for feature engineering and has best-in-class perfor-
mance on problems in vision, speech, language areas. A 
typical robotic application scenario is vision-based trail 
following [1], i.e., the problems of making robots autono-
mously follow a man-made trail (such as those normally 
traversed by hikers or mountain-bikers). Solving this prob-
lem would be the most efficient and safest way for a 
ground robot to travel medium and long distances in differ-
ent environments for search and rescue. The navigation 
problem was casted as an image classification task and 
solved by using specific deep learning models to learn a 
control strategy that mimics the choice of an expert driver 
based on the visual input. Unlike the previous works [2], [3] 
dealing with trail perception solved a segmentation prob-
lem, i.e., aimed at determining which areas of the input 
image correspond to the image of the trail, deep learning 
techniques bypass the need by directly operating on the raw 
RGB frames and provide high-level information. The accu-

racy of it is comparable to the performance of humans, 
reaching 85.2%, much higher than that of the traditional 
method using image saliency [4] (52.3%). 

Most of the existing studies on deep learning-based trail 
following are for single-robot. With the development of 
technology, cooperative multi-robot system is becoming 
more and more important in civil and military areas for 
better performing tasks. For example, in the search and 
rescue problem, the images acquired by the UAV can be 
adopted to survey the surrounding environment with the 
aim of getting information about the target. Then the UGV 
can follow the UAV to rescue the target in the shortest time. 
When the ground robot encounters enormous obstacles, 
such as trees and buildings, the UAV can provide a much 
broader view from a higher altitude to help the UGV get an 
adequate understanding of the environment. This method 
can effectively complement the viewing capabilities of an 
unmanned ground vehicle by taking advantage of the heter-
ogeneity of a mixed robotic system. Therefore, how to 
combine the cooperative trail following method with deep 
learning techniques remains a great challenge which we are 
facing now.  

 There are two main challenges in the deep learning –
based cooperative trail following method:  (1) Data Fusion 
and (2) Quality of Service (QoS) Assurance. The data fusion 
problem aims to make full use of the data from aerial and 
ground. That means we need to utilize the useful infor-
mation and make up the limitations of the two images for 
the purpose of achieving a global optimization. The QoS 
assurance is the problem of maximally utilizing the aerial 
data while minimally sacrificing the recognition latency 
because the robot interacts directly with the physical world. 
Therefore, the applications used in robots generally give 
considerable attention to QoS, such as latency or real-time 
assurance. For example, a low response time in an auto-
driving vehicle may cause a disastrous traffic accident. 

In order to solve these problems, we proposed the cor-
responding solutions to the challenges above. Towards the 
first problem, the machine learning technologies, which 
have been used for a long time [5,6] to map visual inputs to 
steering commands [7, 8, 9], can solve this by making full 
use of the data. The technologies could be implemented in 
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the cloud, using the architecture of “Cloud Robotics” [10], 
which can make robots break through the limitations of 
their resources and perform complex algorithms. To be 
concrete, the ground robot and the aerial robot can capture 
the images from different altitudes and then send the data to 
the cloud to get a final decision. The cloud stores the final 
classifier and builds a bridge for the communication be-
tween the ground and aerial robots. There are three main 
reasons for using the “Cloud” architecture. The first one is 
that we need a complex mechanism that will not only guar-
antee the coordination of the aerial and ground robots but 
also perform the complex algorithms corresponding to the 
DL-Cooper (Deep Learning Cooperative) method. Mean-
while, the whole process can be implemented on the cloud 
because the cloud can accelerate the calculation process, 
which will save much time sacrificing little cost of trans-
mission. The second one is that this approach can make the 
robot save the storage space and the energy consumption 
compared with the method which makes the ground robot 
deal with the problem alone. The third one is knowledge 
integration, that is to say, the cloud can integrate the 
knowledge from the aerial and ground and make them 
complement with each other.  

To guarantee the QoS requirement, we also proposed 
the methods which are aiming for decision fusion, not fea-
ture fusion. Because the feature contains more information 
than the decision and the process of transformation will be 
time-consuming. We proposed the concept of “Threshold” 
which stands for the confidence of the ground robot to min-
imally sacrifice the recognition latency as well. That is to 
say, when the recognition task remains within the capabil-
ity of the ground robot (the confidence is larger than the 
“Threshold”), the result will be directly returned to the 
ground robot and the time delay can be quickly eliminated 
because everything is under control. However, when the 
task is beyond the capability of the ground robot (the confi-
dence is less than the “Threshold”), the ground robot 
would forward the request and seek help from the cloud. In 
this paper, we developed a deep learning-based cooperative 
(DL-Cooper) trail following method for mobile robots to 
explore the wild environment with the support of cloud. 
Compared with other trail following methods, this method 
has efficiently dealt with the cases where the ground robot 
does not have enough confidence to make decisions (sur-
rounded with obstacles) and also significantly promoted the 
accuracy for the final action.  

The rest of this article is organized as follows: Section 
II reviews some related works. Section III introduces the 
problem formulation. The techniques used to train the clas-
sifiers based on CNN, the decision fusion algorithms and 
the evaluation of DL-Cooper are described in Section IV. 
In Section V, the experiments performed and the results 
obtained both in simulation and real-world environment are 
presented. 

II. Related work 

Our method covers various research areas, including 
deep learning for the path planning of robots, ground vehi-
cle navigation with the support of aerial data and cloud 
robotics. 

A. Deep Learning for the Path Planning Problem 

Path planning is a challenging and mostly unsolved task 
for robotics. Solving such problem is important for many 
applications, including wilderness mapping [11], search 
and rescue. Most of the solutions using deep learning tech-
nologies are based on single-robot. A CNN-based rein-
forcement learning method [12] was proposed for mobile 
robots to explore an unknown environment based on raw 
sensor information. The policy search problem was trans-
formed into a deep reinforcement learning problem that 
uses the convolutional neural networks (CNN) for the com-
plex mapping between states and actions. The method is 
not end-to-end because it separated the whole architecture 
into two parts. Another approach [13] is to learn a left/right 
controller for an unmanned aerial vehicle (UAV) based on 
image data. The UAV was able to autonomously navigate 
through a forest while successfully avoiding collisions with 
trees in the majority of the cases. The approach [14] using a 
laser-based and data-driven motion planning method based 
on deep auto-encoders was also proposed. The collision 
avoidance capabilities of this method are shown in simula-
tion and on a robotic platform.   

Among the path planning problems, trail following 
would be the most efficient and safest way for a ground 
robot to travel medium and long distances in different envi-
ronments for search and rescue. Unlike the methods above, 
our approach casts the navigation problem as a supervised 
image classification task and solved it by using Alexnet [15] 
model, a typical convolutional neural network. Meanwhile, 
our method is based on multi-robot and has successfully 
applied machine learning technologies to the decision fu-
sion process in order to make full use of the valuable in-
formation.   

B. Ground Vehicle Navigation with the Support of Aerial 

Data 

When it is not possible for the ground robot to get an 
adequate understanding of the environment, aerial sensing 
can dramatically improve path planning performance by 
detecting large obstacles such as buildings and bodies of 
water as well as areas of preferable terrain such as roads. 
Sensory perception from aerial data has been studied by 
many researchers within the robotics community. The Na-
tional Robotics Engineering Consortium developed a novel 
semi-autonomous unmanned ground vehicle (UGV) that 
utilized a dedicated unmanned helicopter that flew ahead of 
the UGV to detect holes and other hazards ahead of the 
vehicle [16]. The helicopter served as a scout to explore 
terrain before the UGV had to traverse it, allowing the 
UGV to replan its route to avoid certain areas entirely 
based on elevation hazards detected by the helicopter. The 



General Dynamics Robotic Systems (GDRS) used a prior 
data from a manned aircraft to perform path planning and 
air-ground terrain registration for robot localization. In [17], 
the authors presented techniques to classify three-
dimensional (3-D) points as load bearing surfaces or vege-
tation. During the mission, the robot followed the prior path 
while avoiding obstacles using on-board perception. The 
load-bearing surface recovered from the air and the ground 
vehicle was also co-registered in 3-D to estimate the abso-
lute pose of the robot in the prior map. 

 In our method, the data from the ground robot is also 
taken into account. We want to make full use of the data 
from aerial and ground with the aim of making them com-
plement with each other. Our purpose is to find the heading 
of the trail, not the traversability of the terrain. The deep 
learning technologies are also applied in the multi-robot 
coordinated method to further increase the accuracy and 
bypass the need to extract different kinds of features for 
better performance. 

C. Cloud Robotics 

Cloud robotics is a relatively new research field; it was 
initially proposed in 2010[10] aimed at extending the capa-
bility of robots by leveraging the rich services provided in 
cloud and offloading the complex robotic algorithms to 
cloud. There are many existing works which are based on 
the cloud robotics architecture. RoboEarth is a European 
FP7 project that aims to build a cloud to support knowledge 
sharing, computation offloading, and collaboration. It is 
based on the three-layer architecture: the back-end database, 
the cloud engine, and robots [18]. Rapyuta is a part of Ro-
boEarth that helps robots offload heavy computation to the 
cloud by providing each robot with a customizable virtual 
computing environment [19]. RoboBrain provides a set of 
cloud services to store and share knowledge among robots 
[20]. A collection of practices also exists in cloud robotics 
that aims at the computation offloading of specific robotic 
algorithms such as SLAM [21, 22, 23].  

In our method, we use the cloud to receive the vision 
input from the aerial and ground robots and then deal with 
the decision fusion process as a backend platform. The 
cloud also has the responsibility of keeping the robots co-
ordinated. Instead of simply integrating robots with public 
cloud services, we introduce a task-specified mission archi-
tecture in order to minimize the recognition latency. That is 
to say, we seek help from the cloud only when the task is 
beyond the capability of the ground robot. Otherwise, the 
ground robot can make decision alone according to its own 
experience.   

III. Problem formulation  

Consider a general scene (Figure 1) that the UAV and 
UGV are coordinated to follow a trail with the aim of per-
forming a search and rescue task. The UAV flies above the 
ground robot, facing the same direction as it. To be con-
crete, the ground robot is just in the middle of the aerial  

 

Fig. 1. UAV/UGV coordinated architecture 

image’s bottom line. Then, the UAV can provide a vision 

system as a relative sensor, and fuse this information with 

the absolute position of the ground robot in order to achieve 

an absolute measurement of the position of the obstacles. 

By doing this, it is possible to obtain a mechanism of col-

laborative navigation and perform the rescue task effective-

ly. 
The scenario in the trail following problem is the same 

as the scene above. So we need to compute suitable steer-
ing commands based on the vision data from the ground 
and aerial. Given expert demonstrations we try to find a 
function 
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                    (1)                      

that maps the vision data yg, ya (the image from ground and 
aerial) to desired steering commands u when the confidence 
of the ground robot is larger than the threshold. The func-
tion f is parametrized by the weights of the deep learning 
network. During training, we find the weights that best 
explain a set of training data which is comprised of vision 
data and the according motion commands. When the confi-
dence of the ground robot is less than the threshold, we aim 
to map the possibility pg, pa (the possibility produced by the 
ground and aerial classifier) to desired steering commands 
u. The function h means the corresponding decision fusion 
algorithm. The optimization criterion is based on (2), the 
difference between the predicted steering commands and 
the ones provided by the expert operator uexp. During de-
ployment, the model parameters are given and the steering 
commands can be computed given the input data yg and ya. 
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             (2) 

      In order to optimize the loss function above, we have to 
overcome several challenges. Firstly, the relevant infor-
mation has to be extracted from the vision data. Secondly, 
using this information, a model has to be found that de-
scribes the relationship between the observations and the 
actions to take. Thirdly, during deployment, this model has 
to be used to take the right decisions as soon as new obser-
vations are available. Fourthly, the decision fusion algo-



 

rithms have to make full use of the aerial and ground data, 
extracting valuable information and discarding the dregs.  

The label of the image is defined as follows. Consider a 
generic scene with a single trail in a wilderness setting. Our 
input from the ground robot is an image captured by a cam-

era situated above the ground. Let v be the direction of the 

camera’s optical axis; we assume that v lies on the hori-

zontal plane. Furthermore, let t be the dominant direction 

of the trail: we definet as the (horizontal) direction towards 
which a hiker would start walking if standing at the posi-
tion of the robot, with the goal of avoiding the obstacle. Let 

ɑ be the signed angle between v  and t : we consider three 
classes, which correspond to three different actions that the 
(human or robotic) carrier of the camera should implement 
in order to remain on the trail, assuming that the camera is 
heading for the direction of motion. The details are shown 
in Figure 2. 

 Turn Left (TL) if −90◦ < ɑ < −β; i.e., the trail is 
heading towards the left part of the image. 

 Go Straight (GS) if −β ≤ ɑ < +β; i.e., the trail is 

heading straight ahead, at least in the close range. 

 Turn Right (TR) if +β ≤ ɑ < +90◦; i.e., the trail is 

heading towards the right part of the image. 

Given the input image, our goal is to classify it to one of 
these three classes. In the following, we consider β = 15 
degrees. The relationship between the two images is shown 
in Figure 3.  

              
   Fig. 2. Label description   

                             

                                             
“Turn Left”  (Ground)                               “Turn Left”  (Aerial)          

              a) In simulation environment 

                                  

                  
     “Go Straight”  (Ground)                              “Go Straight”  (Aerial)     

            b) In real-world environment 
Fig. 3. Relationship between the two images from aerial and ground 

IV. The DL-Cooper Method 

DL-Cooper is to make mobile robots follow the trails 
using deep learning methods with the aid of cloud. We 
separate this architecture into two parts: training classifiers 
and decision fusion. In this section, we will firstly intro-
duce the framework of our architecture and then describe 
the details about our supervised learning, which can find 
the right steering commands according to the visual input. 
Finally, we will introduce the decision fusion algorithms as 
well as the performance benefits. 

A. Framework of DL-Cooper 

DL-Cooper, as shown in Figure 4, aims to apply deep 
learning technologies to the coordination of multi-robots. 
We separate this approach into two processes, training clas-
sifiers using deep learning models and fusing decisions 
based on the QoS requirement. Firstly, we built a super-
vised learning model as the classifier of the ground robot 
and the UAV by taking images as input and the command 
of the robot as output. The datum was manually labeled 
with control commands to tune the moving directions of the 
mobile robot. Secondly, the decision fusion methods are 
applied to combine the preliminary classification from the 
individual data sources and the fusing process is dealt with 
in the cloud. 

B. Alexnet for Training 

Since we solve the trail following problem as an image 
classification problem, a model has to be found that de-
scribes the relationship between visual input and the actions 
to take. We take Alexnet as our model which shows excel-
lent advantages in image classification recent years. To be 
noticed, the main purpose of DL-Cooper is to combine the 
cooperative trail following method with deep learning 
technologies. So what we focus on is the comparison be-
tween the deep learning single-robot trail following method 
and DL-Cooper. Meanwhile, Alexnet is just a typical net-
work which stands for the deep learning technologies. In 
our future work, we will try other techniques (i.e. deep 
reinforcement learning) for further research. Alexnet is 
composed of 5 convolutional layers and three fully con-
nected layers. To be mentioned, we replace the last fully 
connected layer fc8 with a layer consisting of three nodes. 
We also disable “mirror” during training and testing, be-
cause it cannot apply to our experiment: an image with 
“Turn Right” command becomes an image that a robot 
should move to left by mirroring, but the flipped image still 
has a label as “Turn Right.” 

We train our net using back propagation for 90 epochs, 
which requires 46 hours on a workstation equipped with the 
Nvidia Tesla K80 GPU and NVIDIA CUDNN. The train-
ing process for real-world environment is the same as that 
in the simulation environment. 

C. Decision Fusion Algorithms 

Considering the problem of taking decisions, the previous 

method is merely taking the action whose value is the larg-



est. To achieve the goal of trail following through the help 

of cloud, we also consider the fact that robotic applications 

give considerable attention to the QoS because they interact 

directly with the physical world. So we proposed two deci-

sion fusion algorithms which aim to guarantee the QoS re-

quirements.  

The algorithms are implemented when the task is beyond 

the capability of the robot. The concept of “Threshold” 

which we mentioned before is to measure the confidence of 

the ground robot to finish the task alone. We use the max 

possibility the classifier’s “SOFTMAX” layer out puts as 

the standard for measuring. That means, when the max 

possibility is under the threshold, the ground robot and 

quadrotor will take the decision fusion algorithms. Other-

wise, the ground robot will take the decision according to 

its own classifier. 

The algorithm below gives the pseudocode of 

“SVM”/”SOFTMAX” algorithms. The first algorithm 

“SVM” is to use the SVM classifier. We firstly splice the 

two three-dimensional vectors into one six-dimension vec-

tor. Then we take the new vector and the label as the input 

for training SVM classifier using the training dataset. So 

when the test data is available, we can use the same proce-

dure to get the final output. The second algorithm 

“SOFTMAX” is to replace the SVM classifier with 

SOFTMAX classifier, and the other is the same as the 

“SVM” algorithm. 

D. Performance Benefits of Our Algorithms 

The benefits of introducing the decision fusion algo-
rithms into our new method can be analyzed theoretically 
from the following aspects. 

1) Accuracy improvement compared with the robot alone  

By adding decision fusion algorithms to our method, the 
incorrect recognition results provided by the ground classi-
fier may be corrected. Therefore, for samples that the 
ground classifier has recognized incorrectly, the final accu-
racy in our architecture can be promoted from 0 to 

                         (1 − 𝑝)𝑃                                            

where 𝑃 is the recognition accuracy of the final classifier 
(“SVM/SOFTMAX” classifier), and 𝑝 is the false positive 
rate of the confidence measurement transition mechanism. 
(i.e., the ground classifier recognized the image incorrectly 
but the transition mechanism does not send the sample to 
be further dealt with)  

However, the promotion of recognition accuracy is not 
sure for all types of images. The “collateral damage” of the 
transition mechanism should be considered. For example, 
an image already correctly recognized by the ground classi-
fier may be mistakenly sent to further deal with. We denote 
the accuracy of the ground classifier as M. Then total accu-
racy H can be calculated as follows: 

𝐻 = 𝑀(1 − 𝑝) + 𝑀𝑝𝑃 + (1 − 𝑀)(1 − 𝑝)𝑃          

Here, 𝑀(1 − 𝑝) refers to the samples which are classi-
fied correctly by the ground robot and taken as the final 
decision. 𝑀𝑝𝑃 means that the samples are already classi-
fied correctly by the ground robot but mistakenly sent to 
further deal with and finally classified correctly by the de-
cision fusion algorithm. (1 − 𝑀)(1 − 𝑝)  means that the 
samples are wrongly classified by the ground robot but 
finally rectified attributed to the correctness of the transi-
tion mechanism. Through a simple deformation, we could 
obtain the following theorem: 

(Theorem 1) Recognition accuracy H ≥ M if and only if 

        𝑃 ≥
𝑀𝑝

𝑀𝑝 + (1−𝑀)(1−𝑝)
     

           


2) Optimization of the time delay compared with the meth-
od that execute the algorithms all the time 

The objective of introducing the “Threshold” is to opti-
mize the request QoS, particularly, the latency for the im-
ages that the ground robot is familiar with. The total laten-
cy of images that DL-Cooper recognized can be calculated 
with 

                                     𝑙𝑑 = 𝑙𝑔 + μ𝑙𝑝                                     
where 𝑙𝑔 is the average latency of the classifier stored in 

the ground robot, 𝑙𝑝 is that of the cloud and μ is the proba-
bility that the transition mechanisms believe it is the time to 
seek help from the cloud. Compared with the method that 
the ground robot seeks help from the cloud all the time, we 
can obtain the following theorem: 

(Theorem 2)   If μ < 1 − 
𝑙𝑔

𝑙𝑝
 , then 𝑙𝑑 <  lp 

 𝑙𝑔 is significantly less than 𝑙𝑝 in practice because the 
cloud is on the Internet while the ground classifier is de-

ployed near the robots. As a reference, 
𝑙𝑔

𝑙𝑝
 in the experi-

ments presented in the next section is frequently below 0.1. 

Consequently, 1 − 
𝑙𝑔

𝑙𝑝
 is usually a number near 1 and the 

final average latency for the classification is certainly less 
than the method without “Threshold”. 

 

 

  



 

  

 

 

 
 

 

 

 

 

 

 

 

Fig. 4. Framework of DL-cooper 

 
TABLE  I.      THE ”SVM” / ”SOFTMAX” DECISION FUSION ALGORITHM 

Algorithm 1 : The SVM/SOFTMAX classifier  

Input: image Xground captured by the ground robot 

Output: class label C defined in Problem Formulation 

1 Recognizing Xground by the ground robot classifier, getting a tuple (PGstraight, PGleft, PGright) (the possibility of cer-
tain label )and a confidence Ψ 

2 if Ψ < limit, then 

3     Seeking help from the UAV,UAV capture the image Xaerial  and send it to cloud 

4     Recognizing Xaerial  by the aerial robot classifier, getting a tuple (PAstraight, PAleft, PAright) 

5     Sending the new list [PGstraight, PGleft, PGright, PAstraight, PAleft, PAright] to the SVM/SOFTMAX classifier 

6     The SVM classifier outputs label Csvm 

7     C = Csvm  

8 else 

9     C = Cground 

10 end if 

11 return C 

 

 
 
 
 

 
   

      

         

 

          

  

a) The accuracy of "SVM/SOFTMAX"      b) The ratio of samples under different thresholds        c) f (t) under different thresholds                                                              
Fig. 5. Experiment results for the fix of “Threshold”



 

 

 

 

 

 

 

 

Fig. 6. The accuracy of “SVM”/”SOFTMAX” algorithm          

                                                                                     

 

 

 

 

 

 

 

 

Fig. 7. Recognition latency comparison 

V. Experimental Results 

We evaluate our work through a set of experiments on 
the data we collected in simulation and real-world envi- 
ronments in order to demonstrate how well different algo-
rithms perform in contrast with the two basic ones. 

A. Dataset   

We solve the problem as a supervised machine learning 
task, which is extremely challenging because of the wide 
appearance variability of the trail and its surroundings: 
perceptions are heavily affected by lighting conditions, 
vegetation types, altitude, local topography and many other 
factors. We deal with such challenges by gathering a large 
and representative labeled dataset, covering a large variety 
of trails and a long distance on each. 

The dataset in the simulation environment is acquired in 
Gazebo 8.0 of robot operation system (ROS).To generate 
the training dataset, we control the quadrotor using the 
keyboard. When the quadrotor flies in the low altitude 
(1.3m), it collects the data representing the views of the 
ground robot. When it flies in the higher height (21.3m), 
the sight of it stands for the aerial data. The dataset in the 
real-world environment is acquired in a village. We use a 
quadcopter and a digital camera to collect the data for the 
aerial and ground robot using the three commands. To be 
concrete, the quadrotor is controlled to follow the trail by 
an expert pilot with an extremely low speed. Every 5 sec-
onds, the quadrotor rotates left and right 90 degrees respec-
tively from the center line of the trail. Meanwhile, an expert 
driver holding the digital camera follows the quadrotor all 
the time below facing the same direction. The pitch angle 
between them is 60 degrees in order to compensate the 
height difference. Both the quadcopter and the digital cam-
era are turned to recording mode and the images are cap-
tured and matched later. Our quadcopter is the Parrot Be-
bop Drone and from the Bebop’s stream connection, we 
receive an image of the resolution of (1920×1080) pixels, 
the same as that from the digital camera. The dataset covers 
approximately 5 kilometers of hiking trails acquired at alti-
tudes ranging from 300m to 900m, different times of the 
day and weather. Meanwhile, many different trail types and 

surroundings are represented, ranging from sloped narrow 
alpine paths to wider forest roads. 

Each image is labeled by an expert driver, associated 
with its ground true class. We also augment the training 
dataset by synthesizing left/right mirrored versions of each 
training image. In detail, a mirrored training image of class 
TR (TL) yields a new training sample for class TL (TR). A 
mirrored GS training sample yields another GS training 

sample. Additionally, mild affine distortions (±10% trans-

lation, ±15% rotation, ±10% scaling) are applied to train-

ing images to increase the number of samples further. To 
train a classifier robust to noise, we generate additional 
images and augment our dataset size by adding Gaussian 
white noise of mean 0 and variance 0.01 to our dataset. 
Therefore, the size of our final dataset is twice larger than 
the previous one. The dataset has been split in disjoint 
training (12320frames) and testing (4855 frames) sets. The 
split was defined by carefully avoiding that the same scene 
appears in both the training and testing set. 

B. Fix the Value of “Threshold” 

In order to fix the suitable value of “Threshold”, we 
firstly test the accuracy of the two algorithms under differ-
ent thresholds. The time delay is definitely proportional to 
the threshold because the images to be dealt with are in-
creasing. From Figure 5.a, we found that the accuracy is 
also proportional to the threshold. So we decide to find the 
point that best measures the confidence of the classifier 
according to its classification results. We divide the sam-
ples in the testing dataset into two kinds, “Correct” and 
“Wrong” based on the classified result. Towards each kind, 
we give the propagation of the samples, the max probabili-
ties of which are under the corresponding threshold. (Fig-
ure 5.b) And the threshold t needs to satisfy the condition: 
the number of the “Correct” samples the confidence of the 
ground robot on which is larger than t is as many as possi-
ble; the number of the “Wrong” samples the confidence of 
the ground robot on which is less than t is as many as pos-
sible. According to this, we need to find the threshold t that 
maximizes the function below:  

                  𝑓(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥(
(1−𝐶𝐿(𝑡))𝑊𝐿(𝑡)

𝐶𝐿(𝑡)(1−𝑊𝐿(𝑡))
)                                  



 

Here, 𝐶𝐿(𝑡)/𝑊𝐿(𝑡) means the number of samples the 
confidence of the ground robot on which is less than t in the 
“Correct” /”Wrong” dataset. From Fig 5.c, we can see that 
0.75 makes the function 7 maximum, so we set the thresh-
old to 0.75 because it can best reflect the “Landmark” of 
the ground robot’s classifying ability. 

C. Experiments on the Algorithms 

In this subsection, we test the “SVM” and“SOFTMAX” 

algorithms in two methods. The first one is to use the test-
ing dataset in order to show the improvement of accuracy. 
The second one is to implement our method on a real plat-
form with the aim of showing the effectiveness of our ap-
proach and the optimization of time delay compared with 
the method that not using the “Threshold”. 

To be noticed, in these two methods, we should firstly 
train the SVM/SOFTMAX classifier using the training 
dataset as the final classifier. The mode of SVM is one to 
the rest because our problem has three labels. The ratio 
between the training and testing size is 6:4. The kernel 
function which we use to cut the plane best is “RBF.” And 
the parameters of it (C=5e3 and Gamma=0.005) are ob-
tained from two basic sets, we choose all kinds of pairs to 
see which one has the best performance. Considering the 
fact that the “SOFTMAX” classifier uses time seed to give 
random digitals, we do the experiments ten times and cal-
culate the average performance. 

1) Experiments using the testing dataset 

We test the two algorithms using our testing dataset in 
order to show the improvement of accuracy under the best 
threshold 0.75. From Figure 8, we can clearly see that in the 
simulation environment, the accuracy of the “SVM” and  
“SOFTMAX” algorithms increase significantly from 77.5% 
to 92.6% “SVM”  and 91.2% “SOFTMAX”. In the real-
world environment, the accuracy also reaches 95.3% “SVM” 
and 94.1 “SOFTMAX”, much higher than the previous one 
(80.3%).This shows that the possibilities extracted by the 
classifiers have their own value and can be supplemented 
with each other. And it also verified our suppose that the 
view from global can make up the limitation of local views. 
Of course, this should also be attributed to the success of the 
machine learning approach.  

2) Implementation on a real platform 

We use a TurtleBot [24], a wheeled mobile robot and 
the Parrot Bebop Drone to perform the trail following task. 
And they are directly connected to a DELL R430 server 
which stands for the cloud via Wi-Fi. The server stores the 
ground classifier and the aerial classifier which have been 
trained using the real-world dataset. We implemented a 
simple reactive controller which translates the “SOFTMAX” 
algorithm’s output to control signals as follows. Yaw (i.e. 

steering) is proportional to P (TR)-P (TL) ; a positive value 
steers the robot to the right, and a negative value steers the 
robot to the left. Speed is proportional to P (GS). When the 
confidence of the classifier on the TurtleBot is less than 

0.75, it would send a message to the server for help. The 
server then received the image from the Parrot Bebop 
Drone and deal with them using “SOFTMAX” algorithm. 
The value of Speed and Yaw was then sent to both the Tur-
tleBot and the Parrot Bebop Drone. When the TurtleBot is 
confident enough to make decision alone, it would calcu-
late the control signals based on its own classifier (saved on 
the TurtleBot) and then send them to the Parrot Bebop 
Drone through the server. The two robots will send signals 
to the cloud immediately when they finish the instant 
movements with the aim of coordination. 

We record the recognition latency as the TurtleBot 
moves forward. In order to show the optimization of the 
time delay, we repeat the last experiment using the method 
without “Threshold”, which is to perform decision fusion 
algorithms on the cloud all the time and record the results. 
As shown in Figure 7, the latency of the method without 
“Threshold” is relatively high and increased in a constant 
speed. The DL-Cooper method is more predictable because 
its latency is lower and this validated the Theorem 2 effec-
tively. 

The main problem we observed during our tests in real-
istic conditions is that in the forested environments, the 
obstacles (i.e. branches of the trees) may block the way of 
the Parrot Bebop Drone. The quadrotor needs to be coordi-
nated with the TurtleBot, which means it would take the 
same action as the TurtleBot. Unfortunately, the action may 
have a bad result on the quadrotor. We also observed that 
the ground robot is often unable to follow the trail if there 
is not enough free space besides the trail centerline. This 
may be caused by the rough translation of the signal be-
cause the classifier compensates a lateral shift only when 
the robot is about one meter off the center line in our exper-
iments. But in other relatively open environments with 
wide trails, the ground robot and quadrotor were able to 
successfully follow the trail for a few hundred of meters.  

VI. Conclusion 

This paper presented a new method to realize trail fol-
lowing in the wild environment by the CNN-based super-
vised learning network with the aid of cloud. The proposed 
modular network architecture provided a convenient way to 
transfer and update in the future. By fusing the decisions of 
the ground robot and the aerial robot, the exploration task 
was accomplished effectively. The test results in the simu-
lated environment and real-world environment showed that 
our method could achieve great accuracy improvement with 
the aid of aerial data. 

However, several accessible aspects should be consid-
ered in the future to improve it. The whole framework 
should be implemented to train end-to-end. That means 
there should be no separated classifier. We can also use the 
unsupervised techniques to finish this task in order to im-
prove the ability to adapt to new environments. 
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