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Abstractð The Internet of Things (IoT) aims to integrate 

physical devices (aka ñthingsò) on the Internet.  Enabling (physical) 

devices/things to form loosely-coupled connections with each other 

and Internet services/resources enables new and rich interactions 

between devices, internet enabled services/resources and users. 

However, this, in turn,  leads to the question of how to manage data, 

services, and interactions of the physical and cyber components. 

One possible way of managing the services and data and their 

interactions is by use of distributed ledgers like Blockchain. This 

paper presents the concept of using privately distr ibuted ledgers as 

a means for managing the digital ecosystems of IoT. 

Blockchain Patterns, Blockchain, Access Control, IoT, Fog 

Computing, Edge Computing, Scripts 

I. IOT  

IoT aims to integrate physical devices (aka ñthingsò) on the 

Internet.  Enabling (physical) devices to form loosely-coupled 

connections with each other and  Internet services/resources 

allows new and richer interactions between devices, internet 

enabled services/resources and users.  The idea of enhancing the 

capabilities of physical devices by connecting them to remotely 

hosted software components is also at the center of the cyber-

physical system (CPS) paradigm. However, unlike IoT that 

supports loose-coupling between physical and cyber 

components,  CPS   favors  ñ é tight conjoining of and 

coordination between computational and physical 

resources. éò [1].  

In their IoT review, Gubbi et al. [2] differentiate between a 

thing-centric and cloud-centric view. The thing-centric view 

centers on the enhancement of a thing and rich user experiences 

when engaging it. Smart objects [3] or enchanted devices [4] are 

the most prominent examples in this category.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1. Three layers of cloud-centric IoT[1]. 

 

The cloud-centric approach [2,5,6] moves the focus away from 

the thing towards the services and applications that process large 

data streams. This view is primarily concerned with the 

requirement to scale e,g, handle/manage large numbers of 

connected devices. This model/paradigm implies three core 

layers. The things layer compartmentalizes the ñnetwork(s) of 

thingsò [2]. The services layer hosts all core IoT services, e.g., 

data storage, analytics, and storage.The applications layer is the 

host for applications like surveillance, monitoring, managing.   

The advantage of this design is the utilization of cloud 

computing for the higher IoT functions. When focussing on IoT 

ñbig dataò scenarios, e.g., smart city, this approach is favorable. 

However, this approach has drawbacks namely bandwidth, 

latency, and weak interactions. Since all data is processed in the 

cloud, the upload requires's significant bandwidth. By placing 

the computation several network hops away from the physical 

devices, there is a noticeable latency which in turn is a 

disincentive for engaging the devices.  These are of course well-

Services 

Things 

Applications 



known issues of a  cloud-centric solution [7], and that can be 

solved by moving the computation closer to the edge of the IoT 

system, e.g., via fog-computing [8,9] or edge-computing [10].  

However, moving third-party computation into vehicles adds 

new challenges. While it is safe to assume that vehicles will 

continue to have increased computational and network resources 

that can be shared, the issue of multi-tenancy, e.g., multiple 

parties sharing the resources introduces novel challenges.  

This paper focusses on the use of distributed ledger technology 

(aka Blockchain technology) as means to deal with the access 

management issues in IoT. The remainder of the paper is 

structured as follows.  Section two discusses the multi-tenancy 

issues followed by a brief access control review section. 

Blockchain and blockchain design patterns are discussed in 

sections 4 & 5. This is followed by an evaluation in section 6 

and an outlook and sumary in section 7.  

 

II. MULTI-TENANCY  

Multi -tenancy [11] refers to an architecture that supports 

multiple user groups (tenants) to share one or more applications 

or services. To support the logical separation of tenants sharing 

applications or services, they must operate within different 

instances/contexts.  Multi-tenancy has been extensively 

explored within the context of data [12] and cloud-hosted 

services [13,14,15]. Cherrier et al. [16] identified control flow, 

access rights [17,18,19] and different settings for actuators as 

critical challenges for multi-tenancy in IoT.  Software-defined 

networking (SDN) [20, 21] is a management concept that 

centers on using abstraction to enable the decoupling the 

control plane (determine destinations of traffic) and data plane 

(forwarding traffic). Adopting this concept in the IoT space has 

led to the rise of Software-defined IoT (SD-IoT) [22]. SD-IoT 

uses abstraction to simplify provisioning and customization of 

its components. Network Function Virtualization (NFV) [23] 

goes beyond SDN by focussing on the virtualization of all 

elements resulting in the ability to define customized virtual 

networks. Virtualization is used within IoT, e.g., virtual sensors 

[24,25,26], but these approaches focus on combining or 

abstracting individual components not defining virtual IoT 

systems. It is essential to recognize the costs regarding required 

bandwidth and processing power needed to support the 

overhead introduced by this approach. Similar to a CPS, 

physical and virtualized components must be able to 

communicate. This is relatively easy when resource-rich single 

board computers (e.g., Raspberry Pi) or computer on a module 

like the  Intel Edison are used. These are de facto Linux systems 

that have enough CPU, Ram and networking capabilities to stay 

connected with their virtual twins. However, these resource-rich 

platforms are relatively expensive and more importantly not 

low-energy solutions. This, in turn, limits their deployment in 

IoT. When using low-energy System on a Chip (SoC) IoT 

platforms things change. The TI CC2541 that is designed to run 

on a single coin cell battery for years (depending on usage 

scenario) and the  Nordic nRF52832 are good examples of this 

class of IoT platforms. While these single-chip microcontrollers 

offer for example 32-bit ARM Cortex processors, they do not 

provide the ability to run multiple programs or even a single 

multi-threaded executable. Consequently, the virtualization 

approach is not useful for this growing class of IoT nodes. 

 

 
 

Figure 2&3. Intel Edison on custom Arduino Board 

 

However, it is important to note that these platforms are capable 

of hosting a single program that can monitor inbound low-

energy connections, send data via these connections and of 

course interact simple sensors and actuators.  

 

 
 

Figure 4. TI CC2541 Keyfob 

 

A particularly exciting aspect of these platforms is their ability 

to host interpreters like Javascript (Espruino, 

http://www.espruino.com/). Rather than virtualizing IoT nodes, 

it becomes possible to allow third parties to push scripts onto the 

nodes. 

This, of course, offers a radically different approach on multi-

tenancy. Rather than providing a costly virtualization, scripts 

can be executed directly. Sandboxing is achieved by simply 

limiting the capabilities of the underlying interpreter. 

 

 
 

 

 

 

 

 

 
 

Figure 5. Nordic nRF52832 on development board 

 

By representing the IoT nodes as RESTful web services [27], it 

becomes possible to not only access them via Robinsonôs [28] 

CRUD pattern [29] but also move towards Eherenkartzôs 

computational Rest (http://www.erenkrantz.com/CREST/) in 

which computational expressions are exchanged. Naturally, 

this introduces the need for a robust access control.  

 

http://www.espruino.com/
http://www.erenkrantz.com/CREST/


III.  ACCESS CONTROL 

The two classical approaches for access control are MAC and 

DAC.The mandatory access control (MAC) policy grants 

access based on subjects and objects, which will be assigned 

security labels. Sandhu et al. combined and extended these two 

approaches and introduced 2000 the now dominant Role-based 

access control (RBAC) [31, 32,33,34,35,36]. RBAC uses the 

data abstraction concept. Instead of using the default operating 

systemôs permissions such as read, write, and execute, data 

abstraction allows the definition of abstract permissions [37]. 

Attribute-Based Access Control (ABAC) [26,27,28,29,30] is an 

extension of RBAC. However, inter-organizational access 

control remains a challenge with RBAC and ABAC due to their 

more or less centralized design.  

Particularly in the context of access control within IoT, where 

multiple cooperative parties ñownò components the centralized 

access control tends to be difficult to achieve. Blockchain has 

emerged in recent years as a fully decentralized alternative that 

seems well suited for the IoT space. 

 

IV.  DISTRIBUTED LEDGER TECHNOLOGY (AKA BLOCKCHAIN) 

A blockchain is a decentralized ledger that contains connected 

blocks of transactions. The fundamental concept behind the 

blockchain is that tamper-proof storage of approved 

transactions. Valid/verified transaction are stored in the form of 

blocks that are linked to each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Sample Blockchain. 

 

 

Upon creation of a new block, the hash value of the preceding 

block is entered. Once a new block is formed, any changes to a 

previous block would result in different hash code and would 

thus be immediately visible to all participants in the blockchain. 

Consequently, blockchains are considered tamper-proof 

distributed transaction ledgers. Originally designed as the 

distributed transaction ledger for BitCoin, the concept has 

spread and is now also making its way into enterprise software 

(e.g., Microsoft Azureôs Coco).  

An excellent example of blockchain technology is IBMôs 

ADEPT system [42] that uses IBMôs Bluemix platform. 

ADEPT can store the configuration of IoT devices and as a 

mechanism for pushing code onto devices. 

However, as demonstrated by Verizon, Blockchain technology 

can also be used to trade access keys and therefore be used to 

build a decentralized and fully distributed infrastructure for 

access control. In this model, the owner of a resource, can 

securely transfer/modify or revoke one or more access key to 

another party via the blockchain.   

It is imperative to note that Blockchain technology is not a 

silver bullet. Blockchain assumes that each node needs to see 

all transactions and that all nodes need to store a full copy of 

the data. Obviously, this approach does not scale. Distributed 

Ledger Technology, a superset of Blockchain Technology, 

offers more scalable solutions. First, a permission-based or 

private DLT is needed since identity needs to be established. 

Second, only those nodes that have a legitimate interest in 

transactions should be informed and consulted.   

 

V. DESIGN-PATTERNS FOR DISTRIBUTED LEDGER 

TECHNOLOGY (DLT) AND BLOCKCHAINS 

An often overlooked issue in the deployment of 

DLT/Blockchains is the underlying design-pattern. In the 

context of access control for IoT two basic patterns can be 

identified: 

 

¶ Announcement 

The announcement pattern is used to make a tuple 

consisting of user-id and access privilege known to 

others. The most common form is by use of granting a 

unique access key to an entity. This can be done by 

having the owner of a resource submit a transaction to 

the DLT/Blockchain indicating that entity X is given 

the access key Y. If the name of the entity and the 

access key are visible to all nodes of the Blockchain, a 

public announcement is made. However, entity name 

and access key may be encrypted via a secret known 

to the owner of the resource and the resource manager. 

 

¶ Contract 

The contract (Smart Contract / Transaction Function) 

focusses on the use of a deterministic finite-state 

machine. Again the code can be visible to all nodes on 

the network (public smart contract / public transaction 

function) or encrypted so that only a selected group 

can execute the code. Requests from an entity to 

access a resource are now evaluated by the 

contract/function which in turn allows for more 

advanced access control, e.g., entity X may only do 

five reads, or 2 write operations.    

 

ID: 0 
Block Hash: 327Χ77A 

Parent Hash:NIL 
Trans. Hash: 01bΧ46b 
List of Transactions: 

{} 

ID: 1 
Block Hash: 00AΧCD2 
Parent Hash: 327 ..77A 
Trans. Hash: 333 Χ B27 

List of Transactions: 
{T1,T2,T3 Χ T159} 

ID: 45 
Block Hash: 003Χ882 

Parent Hash: 0AA ..B67 
Trans. Hash: AA7 Χ 27F 

List of Transactions: 
{T92345,T92346,Χ} 



VI.  EVALUATION  

To evaluate the feasibility of using blockchain to govern the 

distribution of scripts onto low-power IoT components a basic 

hub-spoke IoT system was used. As shown in figure 7 Raspberry 

PI 3 are used as middleware components. The top layer devices 

are acting as entry points and the lower level devices as masters 

for the low-power IoT devices (Nordic nRF52832 on a 

development board). Requests are sent to the entry point 

devices, that in turn forward them to the raspberry PIôs that are 

connected directly via BLE to the endpoints. Please note that the 

DLT/Blockchain MultiChain is used in the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Connecting IoT endpoints with Raspberry PIs 

 

 

A. Performance of GET (Reads)   

The first set of tests focuses on external clients retrieving state, 

e.g., reading the temperature. Please note that we represent 

concurrent clients by threads. Two threads refer to threads in a 

load generator issuing GET requests at the specified intervals. 

Different colors refer to different threads. Each setting was run 

three times. The endpoints (e.g., components in a vehicle or 

roadside installation) host JavaScript code that is handling the 

read/writes to/from the underlying sensors and actuators. Since 

GET requests are cachable, these experiments show the 

performance of the cache that is hosted in the top layers of the 

Raspberry PIs. The cache is updated every second by writes that 

emanate from the IoT endpoints. 

Figures 7 ï 9 show that at 1000 ms arrival rates up to 5 

concurrent clients do not impact the middleware. However, as 

the number of concurrent clients and the arrival rate is increased 

(more message in shorter time periods) we can see a dramatic 

decline in the middleware performance. Since all request are 

sent to the same Raspberry PI, we suggest using a basic load 

balancer to distribute the loads across multiple machines. The 

key factor is primarily the number of messages a single 

Raspberry has to process. Apparently choosing a more powerful 

compute node to process the requests would delay the need of a 

load balancer.  

 

 

 
Figure 8. One Client sending 100 GET requests (1 sec delay)  

 

 

 
Figure 9. Two Clients sending 100 GET requests (1 sec delay) 

 

 
Figure 10. Five Clients sending 100 GET requests (1 sec delay) 

 

B. Performance of POST (Writes) 

The second set of tests focuses on external clients sending data 

(changing settings on the sensor) to the IoT endpoints. POST 

messages cannot be cached, and the request must be sent from 

the first layer of Raspberry PIs to the second and finally to the 

endpoint. Given that more machines are involved in processing 

the POST request it is not surprising that latency increases. 

Please note that all POST requests were sent to the same IoT 

endpoint which explains the dramatic decline in performance at 

higher loads. 
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Figure 11. 10 Clients sending 100 GET requests (125 ms delay) 

 
Figure 12. 20 Clients sending 100 GET requests (125 ms delay) 

 

 
 

Figure 13. One Client sending 100 POST requests (1 sec delay) 

 

 

C. Performance of Raspberry Pi hubs 

To evaluate the delay caused by the devices, 100 write and 100 

read requests were sent to an endpoint. As can be seen in figure 

16, changing the state of the endpoint requires around 200 ms 

while reading from the IoT devices requires on average only 140 

ms. 

 

 
Figure 14. Two Clients sending 100 POST requests (1 sec delay)   

 

 
Figure 15. Five Clients sending 100 POST requests (1 sec delay)   

 
Figure 16. 10 Clients sending 100 POST requests (125 ms delay) 

 

 
Figure 17. 100 sequential Writes to IoT endpoint 

 



 
Figure 18. 100 sequential Reads from IoT endpoint 

D. Performance of Blockchain in high throughput 

environment 

To test the performance of the blockchain that controls the 

access privileges, e.g., if sending a JavaScript file is acceptable 

if a request can be served etc. we used two scenarios.To simulate 

high-speed connections we used wired connections. 

 

 

 
Figure 19. Average response time with simulated clients 

 

 
 
Figure 20. Average response time with simulated clients (250 ms 

delay) 

 

 

 
 
Figure 21. Average response time with simulated clients (500 ms 

delay) 

 

E. Performance of Blockchain in Amazon EC2 cloud 

Finally, the experiments are repeated in the Amazon EC2 cloud 

to test the effects of high-performance computing environments 

and high latency. 

 

 
Figure 22. Average response time with simulated clients (no 

delay) 

 

 
 
Figure 23. Average response time with simulated clients (250 ms 

delay) 
 


