
XXX -X-XXXX -XXXX -X/XX/$XX.00 ©20XX IEEE

Decentralized Access Control with Distributed

Ledgers

Using Blockchain to manage IoT access

Ralph Deters

Computer Science

University of Saskatchewan

Saskatoon Canada
deters@cs.usask.ca

line 4: City, Country

line 5: email address

Ralph Deters

Computer Science

University of Saskatchewan

Saskatoon Canada
deters@cs.usask.ca

line 1: 3rd Ralph Deters

Computer Science

University of Saskatchewan

Saskatoon Canada
deters@cs.usask.ca

line 4: City, Country

line 5: email address

line Ralph Deters

Computer Science

University of Saskatchewan

Saskatoon Canada
deters@cs.usask.ca

line 4: City, Countr

Abstractð The Internet of Things (IoT) aims to integrate

physical devices (aka ñthingsò) on the Internet. Enabling (physical)

devices/things to form loosely-coupled connections with each other

and Internet services/resources enables new and rich interactions

between devices, internet enabled services/resources and users.

However, this, in turn, leads to the question of how to manage data,

services, and interactions of the physical and cyber components.

One possible way of managing the services and data and their

interactions is by use of distributed ledgers like Blockchain. This

paper presents the concept of using privately distr ibuted ledgers as

a means for managing the digital ecosystems of IoT.

Blockchain Patterns, Blockchain, Access Control, IoT, Fog

Computing, Edge Computing, Scripts

I. IOT

IoT aims to integrate physical devices (aka ñthingsò) on the

Internet. Enabling (physical) devices to form loosely-coupled

connections with each other and Internet services/resources

allows new and richer interactions between devices, internet

enabled services/resources and users. The idea of enhancing the

capabilities of physical devices by connecting them to remotely

hosted software components is also at the center of the cyber-

physical system (CPS) paradigm. However, unlike IoT that

supports loose-coupling between physical and cyber

components, CPS favors ñ é tight conjoining of and

coordination between computational and physical

resources. éò [1].

In their IoT review, Gubbi et al. [2] differentiate between a

thing-centric and cloud-centric view. The thing-centric view

centers on the enhancement of a thing and rich user experiences

when engaging it. Smart objects [3] or enchanted devices [4] are

the most prominent examples in this category.

Figure 1. Three layers of cloud-centric IoT[1].

The cloud-centric approach [2,5,6] moves the focus away from

the thing towards the services and applications that process large

data streams. This view is primarily concerned with the

requirement to scale e,g, handle/manage large numbers of

connected devices. This model/paradigm implies three core

layers. The things layer compartmentalizes the ñnetwork(s) of

thingsò [2]. The services layer hosts all core IoT services, e.g.,

data storage, analytics, and storage.The applications layer is the

host for applications like surveillance, monitoring, managing.

The advantage of this design is the utilization of cloud

computing for the higher IoT functions. When focussing on IoT

ñbig dataò scenarios, e.g., smart city, this approach is favorable.

However, this approach has drawbacks namely bandwidth,

latency, and weak interactions. Since all data is processed in the

cloud, the upload requires's significant bandwidth. By placing

the computation several network hops away from the physical

devices, there is a noticeable latency which in turn is a

disincentive for engaging the devices. These are of course well-

Services

Things

Applications

known issues of a cloud-centric solution [7], and that can be

solved by moving the computation closer to the edge of the IoT

system, e.g., via fog-computing [8,9] or edge-computing [10].

However, moving third-party computation into vehicles adds

new challenges. While it is safe to assume that vehicles will

continue to have increased computational and network resources

that can be shared, the issue of multi-tenancy, e.g., multiple

parties sharing the resources introduces novel challenges.

This paper focusses on the use of distributed ledger technology

(aka Blockchain technology) as means to deal with the access

management issues in IoT. The remainder of the paper is

structured as follows. Section two discusses the multi-tenancy

issues followed by a brief access control review section.

Blockchain and blockchain design patterns are discussed in

sections 4 & 5. This is followed by an evaluation in section 6

and an outlook and sumary in section 7.

II. MULTI-TENANCY

Multi -tenancy [11] refers to an architecture that supports

multiple user groups (tenants) to share one or more applications

or services. To support the logical separation of tenants sharing

applications or services, they must operate within different

instances/contexts. Multi-tenancy has been extensively

explored within the context of data [12] and cloud-hosted

services [13,14,15]. Cherrier et al. [16] identified control flow,

access rights [17,18,19] and different settings for actuators as

critical challenges for multi-tenancy in IoT. Software-defined

networking (SDN) [20, 21] is a management concept that

centers on using abstraction to enable the decoupling the

control plane (determine destinations of traffic) and data plane

(forwarding traffic). Adopting this concept in the IoT space has

led to the rise of Software-defined IoT (SD-IoT) [22]. SD-IoT

uses abstraction to simplify provisioning and customization of

its components. Network Function Virtualization (NFV) [23]

goes beyond SDN by focussing on the virtualization of all

elements resulting in the ability to define customized virtual

networks. Virtualization is used within IoT, e.g., virtual sensors

[24,25,26], but these approaches focus on combining or

abstracting individual components not defining virtual IoT

systems. It is essential to recognize the costs regarding required

bandwidth and processing power needed to support the

overhead introduced by this approach. Similar to a CPS,

physical and virtualized components must be able to

communicate. This is relatively easy when resource-rich single

board computers (e.g., Raspberry Pi) or computer on a module

like the Intel Edison are used. These are de facto Linux systems

that have enough CPU, Ram and networking capabilities to stay

connected with their virtual twins. However, these resource-rich

platforms are relatively expensive and more importantly not

low-energy solutions. This, in turn, limits their deployment in

IoT. When using low-energy System on a Chip (SoC) IoT

platforms things change. The TI CC2541 that is designed to run

on a single coin cell battery for years (depending on usage

scenario) and the Nordic nRF52832 are good examples of this

class of IoT platforms. While these single-chip microcontrollers

offer for example 32-bit ARM Cortex processors, they do not

provide the ability to run multiple programs or even a single

multi-threaded executable. Consequently, the virtualization

approach is not useful for this growing class of IoT nodes.

Figure 2&3. Intel Edison on custom Arduino Board

However, it is important to note that these platforms are capable

of hosting a single program that can monitor inbound low-

energy connections, send data via these connections and of

course interact simple sensors and actuators.

Figure 4. TI CC2541 Keyfob

A particularly exciting aspect of these platforms is their ability

to host interpreters like Javascript (Espruino,

http://www.espruino.com/). Rather than virtualizing IoT nodes,

it becomes possible to allow third parties to push scripts onto the

nodes.

This, of course, offers a radically different approach on multi-

tenancy. Rather than providing a costly virtualization, scripts

can be executed directly. Sandboxing is achieved by simply

limiting the capabilities of the underlying interpreter.

Figure 5. Nordic nRF52832 on development board

By representing the IoT nodes as RESTful web services [27], it

becomes possible to not only access them via Robinsonôs [28]

CRUD pattern [29] but also move towards Eherenkartzôs

computational Rest (http://www.erenkrantz.com/CREST/) in

which computational expressions are exchanged. Naturally,

this introduces the need for a robust access control.

http://www.espruino.com/
http://www.erenkrantz.com/CREST/

III. ACCESS CONTROL

The two classical approaches for access control are MAC and

DAC.The mandatory access control (MAC) policy grants

access based on subjects and objects, which will be assigned

security labels. Sandhu et al. combined and extended these two

approaches and introduced 2000 the now dominant Role-based

access control (RBAC) [31, 32,33,34,35,36]. RBAC uses the

data abstraction concept. Instead of using the default operating

systemôs permissions such as read, write, and execute, data

abstraction allows the definition of abstract permissions [37].

Attribute-Based Access Control (ABAC) [26,27,28,29,30] is an

extension of RBAC. However, inter-organizational access

control remains a challenge with RBAC and ABAC due to their

more or less centralized design.

Particularly in the context of access control within IoT, where

multiple cooperative parties ñownò components the centralized

access control tends to be difficult to achieve. Blockchain has

emerged in recent years as a fully decentralized alternative that

seems well suited for the IoT space.

IV. DISTRIBUTED LEDGER TECHNOLOGY (AKA BLOCKCHAIN)

A blockchain is a decentralized ledger that contains connected

blocks of transactions. The fundamental concept behind the

blockchain is that tamper-proof storage of approved

transactions. Valid/verified transaction are stored in the form of

blocks that are linked to each other.

Figure 6. Sample Blockchain.

Upon creation of a new block, the hash value of the preceding

block is entered. Once a new block is formed, any changes to a

previous block would result in different hash code and would

thus be immediately visible to all participants in the blockchain.

Consequently, blockchains are considered tamper-proof

distributed transaction ledgers. Originally designed as the

distributed transaction ledger for BitCoin, the concept has

spread and is now also making its way into enterprise software

(e.g., Microsoft Azureôs Coco).

An excellent example of blockchain technology is IBMôs

ADEPT system [42] that uses IBMôs Bluemix platform.

ADEPT can store the configuration of IoT devices and as a

mechanism for pushing code onto devices.

However, as demonstrated by Verizon, Blockchain technology

can also be used to trade access keys and therefore be used to

build a decentralized and fully distributed infrastructure for

access control. In this model, the owner of a resource, can

securely transfer/modify or revoke one or more access key to

another party via the blockchain.

It is imperative to note that Blockchain technology is not a

silver bullet. Blockchain assumes that each node needs to see

all transactions and that all nodes need to store a full copy of

the data. Obviously, this approach does not scale. Distributed

Ledger Technology, a superset of Blockchain Technology,

offers more scalable solutions. First, a permission-based or

private DLT is needed since identity needs to be established.

Second, only those nodes that have a legitimate interest in

transactions should be informed and consulted.

V. DESIGN-PATTERNS FOR DISTRIBUTED LEDGER

TECHNOLOGY (DLT) AND BLOCKCHAINS

An often overlooked issue in the deployment of

DLT/Blockchains is the underlying design-pattern. In the

context of access control for IoT two basic patterns can be

identified:

¶ Announcement

The announcement pattern is used to make a tuple

consisting of user-id and access privilege known to

others. The most common form is by use of granting a

unique access key to an entity. This can be done by

having the owner of a resource submit a transaction to

the DLT/Blockchain indicating that entity X is given

the access key Y. If the name of the entity and the

access key are visible to all nodes of the Blockchain, a

public announcement is made. However, entity name

and access key may be encrypted via a secret known

to the owner of the resource and the resource manager.

¶ Contract

The contract (Smart Contract / Transaction Function)

focusses on the use of a deterministic finite-state

machine. Again the code can be visible to all nodes on

the network (public smart contract / public transaction

function) or encrypted so that only a selected group

can execute the code. Requests from an entity to

access a resource are now evaluated by the

contract/function which in turn allows for more

advanced access control, e.g., entity X may only do

five reads, or 2 write operations.

ID: 0
Block Hash: 327Χ77A

Parent Hash:NIL
Trans. Hash: 01bΧ46b
List of Transactions:

{}

ID: 1
Block Hash: 00AΧCD2
Parent Hash: 327 ..77A
Trans. Hash: 333 Χ B27

List of Transactions:
{T1,T2,T3 Χ T159}

ID: 45
Block Hash: 003Χ882

Parent Hash: 0AA ..B67
Trans. Hash: AA7 Χ 27F

List of Transactions:
{T92345,T92346,Χ}

VI. EVALUATION

To evaluate the feasibility of using blockchain to govern the

distribution of scripts onto low-power IoT components a basic

hub-spoke IoT system was used. As shown in figure 7 Raspberry

PI 3 are used as middleware components. The top layer devices

are acting as entry points and the lower level devices as masters

for the low-power IoT devices (Nordic nRF52832 on a

development board). Requests are sent to the entry point

devices, that in turn forward them to the raspberry PIôs that are

connected directly via BLE to the endpoints. Please note that the

DLT/Blockchain MultiChain is used in the experiments.

Figure 7. Connecting IoT endpoints with Raspberry PIs

A. Performance of GET (Reads)

The first set of tests focuses on external clients retrieving state,

e.g., reading the temperature. Please note that we represent

concurrent clients by threads. Two threads refer to threads in a

load generator issuing GET requests at the specified intervals.

Different colors refer to different threads. Each setting was run

three times. The endpoints (e.g., components in a vehicle or

roadside installation) host JavaScript code that is handling the

read/writes to/from the underlying sensors and actuators. Since

GET requests are cachable, these experiments show the

performance of the cache that is hosted in the top layers of the

Raspberry PIs. The cache is updated every second by writes that

emanate from the IoT endpoints.

Figures 7 ï 9 show that at 1000 ms arrival rates up to 5

concurrent clients do not impact the middleware. However, as

the number of concurrent clients and the arrival rate is increased

(more message in shorter time periods) we can see a dramatic

decline in the middleware performance. Since all request are

sent to the same Raspberry PI, we suggest using a basic load

balancer to distribute the loads across multiple machines. The

key factor is primarily the number of messages a single

Raspberry has to process. Apparently choosing a more powerful

compute node to process the requests would delay the need of a

load balancer.

Figure 8. One Client sending 100 GET requests (1 sec delay)

Figure 9. Two Clients sending 100 GET requests (1 sec delay)

Figure 10. Five Clients sending 100 GET requests (1 sec delay)

B. Performance of POST (Writes)

The second set of tests focuses on external clients sending data

(changing settings on the sensor) to the IoT endpoints. POST

messages cannot be cached, and the request must be sent from

the first layer of Raspberry PIs to the second and finally to the

endpoint. Given that more machines are involved in processing

the POST request it is not surprising that latency increases.

Please note that all POST requests were sent to the same IoT

endpoint which explains the dramatic decline in performance at

higher loads.

WiFI

BLE

Middleware

Figure 11. 10 Clients sending 100 GET requests (125 ms delay)

Figure 12. 20 Clients sending 100 GET requests (125 ms delay)

Figure 13. One Client sending 100 POST requests (1 sec delay)

C. Performance of Raspberry Pi hubs

To evaluate the delay caused by the devices, 100 write and 100

read requests were sent to an endpoint. As can be seen in figure

16, changing the state of the endpoint requires around 200 ms

while reading from the IoT devices requires on average only 140

ms.

Figure 14. Two Clients sending 100 POST requests (1 sec delay)

Figure 15. Five Clients sending 100 POST requests (1 sec delay)

Figure 16. 10 Clients sending 100 POST requests (125 ms delay)

Figure 17. 100 sequential Writes to IoT endpoint

Figure 18. 100 sequential Reads from IoT endpoint

D. Performance of Blockchain in high throughput

environment

To test the performance of the blockchain that controls the

access privileges, e.g., if sending a JavaScript file is acceptable

if a request can be served etc. we used two scenarios.To simulate

high-speed connections we used wired connections.

Figure 19. Average response time with simulated clients

Figure 20. Average response time with simulated clients (250 ms

delay)

Figure 21. Average response time with simulated clients (500 ms

delay)

E. Performance of Blockchain in Amazon EC2 cloud

Finally, the experiments are repeated in the Amazon EC2 cloud

to test the effects of high-performance computing environments

and high latency.

Figure 22. Average response time with simulated clients (no

delay)

Figure 23. Average response time with simulated clients (250 ms

delay)

